Search results for "string [quantum chromodynamics]"
showing 10 items of 166 documents
Quasisymmetric maps and string theory
1994
Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing Run
2021
We search for gravitational-wave signals produced by cosmic strings in the Advanced LIGO and Virgo full O3 data set. Search results are presented for gravitational waves produced by cosmic string loop features such as cusps, kinks and, for the first time, kink-kink collisions.cA template-based search for short-duration transient signals does not yield a detection. We also use the stochastic gravitational-wave background energy density upper limits derived from the O3 data to constrain the cosmic string tension, $G\mu$, as a function of the number of kinks, or the number of cusps, for two cosmic string loop distribution models.cAdditionally, we develop and test a third model which interpolat…
Swampland Bounds on the Abelian Gauge Sector
2019
We derive bounds on the number of abelian gauge group factors in six-dimensional gravitational theories with minimal supersymmetry and in their F-theoretic realisations. These bounds follow by requiring consistency of certain BPS strings in the spectrum of the theory, as recently proposed in the literature. Under certain assumptions this approach constrains the number of abelian gauge group factors in six-dimensional supergravity theories with at least one tensor multiplet to be $N \leq 20$ (or $N \leq 22$ in absence of charged matter). For any geometric F-theory realisation with at least one tensor multiplet we establish the bound $N \leq 16$ by demanding unitarity of a heterotic solitonic…
The Schur Expansion of Characteristic Polynomials and Random Matrices
2021
We develop a new framework to compute the exact correlators of characteristic polynomials, and their inverses, in random matrix theory. Our results hold for general potentials and incorporate the effects of an external source. In matrix model realizations of string theory, these correspond to correlation functions of exponentiated "(anti-)branes" in a given background of "momentum branes". Our method relies on expanding the (inverse) determinants in terms of Schur polynomials, then re-summing their expectation values over the allowed representations of the symmetric group. Beyond unifying previous, seemingly disparate calculations, this powerful technique immediately delivers two new result…
Implications of nonplanar dual conformal symmetry
2018
Recently, Bern et al observed that a certain class of next-to-planar Feynman integrals possess a bonus symmetry that is closely related to dual conformal symmetry. It corresponds to a projection of the latter along a certain lightlike direction. Previous studies were performed at the level of the loop integrand, and a Ward identity for the integral was formulated. We investigate the implications of the symmetry at the level of the integrated quantities. In particular, we focus on the phenomenologically important case of five-particle scattering. The symmetry simplifies the four-variable problem to a three-variable one. In the context of the recently proposed space of pentagon functions, the…
Modular fluxes, elliptic genera, and weak gravity conjectures in four dimensions
2019
We analyse the Weak Gravity Conjecture for chiral four-dimensional F-theory compactifications with N=1 supersymmetry. Extending our previous work on nearly tensionless heterotic strings in six dimensions, we show that under certain assumptions a tower of asymptotically massless states arises in the limit of vanishing coupling of a U(1) gauge symmetry coupled to gravity. This tower contains super-extremal states whose charge-to-mass ratios are larger than those of certain extremal dilatonic Reissner-Nordstrom black holes, precisely as required by the Weak Gravity Conjecture. Unlike in six dimensions, the tower of super-extremal states does not always populate a charge sub-lattice. The main t…
The moduli spaces of S-fold CFTs
2019
An S-fold has played an important role in constructing supersymmetric field theories with interesting features. It can be viewed as a type of AdS_4 solutions of Type IIB string theory where the fields in overlapping patches are glued by elements of SL(2,Z). This paper examines three dimensional quiver theories that arise from brane configurations with an inclusion of the S-fold. An important feature of such a quiver is that it contains a link, which is the T(U(N)) theory, between two U(N) groups, along with bifundamental and fundamental hypermultiplets. We systematically study the moduli spaces of those quiver theories, including the cases in which the non-zero Chern-Simons levels are turne…
Non-supersymmetric AdS6 and the swampland
2021
We discuss infinite families of non-supersymmetric AdS$_6$ solutions in Type IIB string theory. They are siblings of supersymmetric solutions which are associated with $(p,q)$ 5-brane webs and holographically dual to 5d SCFTs engineered by those brane webs. The non-supersymmetric backgrounds carry identical 5-brane charges and are connected to the supersymmetric ones by RG flows. We study the stability of the non-supersymmetric solutions, identifying perturbative and non-perturbative decay channels for all the backgrounds explicitly available. We also identify likely decay mechanisms for solutions that have not been constructed explicitly but may be expected to exist based on brane web cons…
Tracing symmetries and their breakdown through phases of heterotic (2,2) compactifications
2015
We are considering the class of heterotic $\mathcal{N}=(2,2)$ Landau-Ginzburg orbifolds with 9 fields corresponding to $A_1^9$ Gepner models. We classify all of its Abelian discrete quotients and obtain 152 inequivalent models closed under mirror symmetry with $\mathcal{N}=1,2$ and $4$ supersymmetry in 4D. We compute the full massless matter spectrum at the Fermat locus and find a universal relation satisfied by all models. In addition we give prescriptions of how to compute all quantum numbers of the 4D states including their discrete R-symmetries. Using mirror symmetry of rigid geometries we describe orbifold and smooth Calabi-Yau phases as deformations away from the Landau-Ginzburg Ferma…
On axionic dark matter in Type IIA string theory
2013
We investigate viable scenarios with various axions in the context of supersymmetric field theory and in globally consistent D-brane models. The Peccei-Quinn symmetry is associated with an anomalous U(1) symmetry, which acquires mass at the string scale but remains as a perturbative global symmetry at low energies. The origin of the scalar Higgs-axion potential from F-, D- and soft breaking terms is derived, and two Standard Model examples of global intersecting D6-brane models in Type II orientifolds are presented, which differ in the realisation of the Higgs sector and in the hidden sector, the latter of which is of particluar importance for the soft supersymmetry breaking terms.